Westküste 100 a potential EOL-Concept for non PVC-Flooring **ERFMI 21. October 21** www.windmoeller.de Dr. Thomas Hohberg ## Westküste 100 WESTKÜSTEdustrial scale green hydrogen and decarbonization Business Park Ottshore Renewable Synterosene Cement production O ¿ O ½ Capture Cavern Air port Hamburd www.westkueste100.de ## Non PVC Flooring examples Data from published (EPDs) | PU-Flooring Chalk Polymer Others Renewable | 54%
44%
2%
28% | Linoleum Chalk Polymer Cellulose Others Renewable | 26%
34%
36%
2%
70% | Rubber Chalk Kaolin/Silica Polymer Others | 9%
45%
32%
13% | |--|-------------------------|---|--------------------------------|---|-------------------------| | Thermoplast Filler Polymer Others | 54%
38%
8% | Laminat Cellulose Polymer Others Renewable | 82%
12%
2%
82% | Parquett Cellulose Polymer Renewable | 89%
4%
89% | | Carpet Filler Polymer Others | 36%
64%
1% | Carpet tyle Filler Polymer Others | 41%
59%
1% | Carpet tyle Filler Polymer Others | 52%
47%
1% | Dr. Thomas Hohberg # Combined Energetical and Material Recovery plus CO₂ Capturing | PU-Flooring
Chalk
Polymer
Others
Renewable | 54%
44%
2%
28% | Linoleum Chalk Polymer Cellulose Others Renewable | 26%
34%
36%
2%
70% | Rubber
Chalk
Kaolin/Silica
Polymer
Others | 9%
45%
32%
13% | |--|-------------------------|---|--------------------------------|---|-------------------------| | Thermoplast Filler Polymer Others | 54%
38%
8% | Laminat Cellulose Polymer Others Renewable | 82%
12%
2%
82% | Parquett Cellulose Polymer Renewable | 89%
4%
89% | | Carpet Filler Polymer Others | 36%
64%
1% | Carpet tyle Filler Polymer Others | 41%
59%
1% | Carpet tyle Filler Polymer Others | 52%
47%
1% | ## Flooring CE Concept Post Consumer Flooring Sorting Scheme Dr. Thomas Hohberg ## **Cement Industry Requirements** ### **Critical for the Cement process are:** Halogenes (Cl, F, Br), S, P, volatile heavy metals (Sb, Hg, Pb) Typical organic legacy additives should case no problem #### **Questions:** Can we expect post consumer flooring with critical ingrediencies for the cement process Can (Shall) we design new products to fulfil the cement requirements? ## **Consequences / Opportunities** ### Possible next steps: Invitation or Expert meeting with Geocycle or VDZ (Cement industry association) Contacts: Tanja Freiburg, Dr. Thorsten Haase ## **Our Contribution / Competence:** If we can provide Information/Proof, that historical old flooring is suitable for the cement industry, this would be a unique situation qualifying a whole class of post consumer construction waste for a new End Of Life option. #### **Benchmark:** Cement Industry and Westküste 100 EOL can be evaluated (EPD / LCA). The results will be a key Benchmark to compare every other CE concept with. ## **Covered Flooring Range:** Potential to cover almost every non-PVC flooring waste (including existing post consumer waste) within short time while keeping every alternative (material or company specific concepts) unhindered. #### **Globalization:** Cement industry is global present, and the concept has the potential to work globally without long shipment distances.